D級アンプにおけるオペアンプの音質への影響 その6

自励発振式のD級アンプにおける2回路オペアンプの積分回路でのIcmrr(IbとVcmの傾き)の評価をまとめておきます。

こちらの資料を参考にしています。

ppmレベルの精度のオペアンプ回路は実現できるのか?

ICMRR

入力信号のコモンモード・レベルに関連するのは、入力バイアス電流と、電源に伴うその変化であるICMRRです。
図1に示したように、ICMRRは4つに細分化されます。記号の折れ線は、バイアス電流が電圧に応じて可変であり、線形でない可能性があるということを表しています。2つの入力のバイアス電流とレベルへの依存度は異なる可能性があります。また、各入力は、両方の電源に応じて独立して変化します。ICMRR(合算することによりバイアス電流が決まります)により、アプリケーション抵抗の値との乗算で決まる電圧ノイズが生成され、回路全体のオフセット電圧が増加します。

ppmレベルの精度のアンプ回路は実現できるのか?

データシートのグラフから算出したIcmrrをまとめておきます。

ppm レベルの精度を得るために必要なオペアンプのパラメータの比較

IbとVcmのグラフをデータシートより引用します。

OPA2227

OPA2227

ADA4001-2

ADA4001-2

ADA4075-2

ADA4075-2

OPA2134

OPA2134

LT1057

LT1057

LT1213

LT1213

LT1113

LT1113

JFT入力のオペアンプはIbが小さいので問題になりませんが、BJT入力のオペアンプは注意が必要です。

なお、OPA2227の値が小さいのは入力バイアス電流を内部で補償しているからのようです。

D級アンプにおけるオペアンプの音質への影響 その4

自励発振式のD級アンプにおける2回路オペアンプの積分回路での精度の評価をまとめておきます。

こちらの資料を参考にしています。

ppmレベルの精度のオペアンプ回路は実現できるのか?

図と表を引用します。

オペアンプの誤差源
ppm レベルの精度を得るために必要なオペアンプの仕様
ppm レベルの精度を得るために必要なオペアンプのパラメータの比較

比較したオペアンプは以下の11種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

MUSES8920

LT1057

LT1213

NJM2068

LT1113

積分回路は容量を介してFBをかけるため、電源や電流に関連するパラメータ(in, Ib, PSRR, Isc)の影響が大きくなると思われます。

実際のD級アンプで試した積分器に適したオペアンプの中では、ADA4075を基準として、OPA2227, ADA4001-2, ADA4075-2, AD8672, OPA2134, LM4562あたりでしょうか。

D級アンプにおけるオペアンプの音質への影響 その3

自励発振式のD級アンプにおける2回路オペアンプの積分回路でのノイズ密度の評価をまとめておきます。

こちらの資料を参考にしています。

最適ノイズ性能を得るための低ノイズ・アンプ選択の手引き

オペアンプを使った積分器

低ノイズ設計に適したオペアンプの選択
性能指標(Rs,op)の計算

プロットしたオペアンプは以下の9種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

LT1057

LT1213

LT1113

Rs,opが1MΩを超えるJFET入力オペアンプ(LT1057, ADA4001-2, OPA2134)は1MΩの軸上にプロットしています。

また、基準となる積分回路の信号源抵抗は2.7k||56k=2.6kΩ, ジョンソン・ノイズ6.4nVrtHzとして、プロットしています。

実際のD級アンプで試した積分器に適したオペアンプの中で、低ノイズ設計に適したオペアンプは、LM4562, ADA4075-2, OPA2227, AD8672, LT1113となるようです。

D級アンプにおけるオペアンプの音質への影響 その2

自励発振式のD級アンプにおける2回路オペアンプ(積分回路と減算回路)のVs=+-5Vでの音質への影響をまとめておきます。

D級アンプ用オペアンプ比較表 その2

比較対象のオペアンプは以下の11種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

MUSES8920

LT1057

LT1213

NJM2068

LT1113

比較表のデータシートの値(GB積、スルーレート、オープンループゲイン、CMRR, PSRR, 入力オフセット電圧および温度ドリフト、消費電流)はVs=+-15V, Vcm=0V, Ta=25degCのTypicalでまとめています。

実際の動作条件はVs=+-5Vで、回路構成としては積分回路(LPF)と減算回路(比例制御)で利用しています。

また、実際のD級アンプに実装した際の出力電圧のオフセットの実測値(L, R)から算出した絶対値の平均でソートしています。

積分精度への影響が大きい、オープンループゲインとオフセットのよいオペアンプを選択していますが、実際の回路での電圧オフセットの実測値は、必ずしもデータシートの値とは比例しないようです。

D級アンプの電圧オフセットの実測値がよいオペアンプは、OPA2227, ADA4001-2, ADA4075-2, AD8672でした。

D級アンプにおけるオペアンプの音質への影響

自励発振式のD級アンプにおける2回路オペアンプ(積分回路と減算回路)のVs=+-5Vでの音質への影響をまとめておきます。

D級アンプ用オペアンプ比較表

比較対象のオペアンプは以下の8つです。

LM4562

MUSES8920

LT1213

NJM2068

OPA2134

ADA4075-2

ADA4001-2

LT1057

比較表のデータシートの値(GB積、スルーレート、オープンループゲイン、入力オフセット電圧および温度ドリフト、電圧ノイズ密度(10Hz)、消費電流)はVs=+-15V, Vcm=0V, Ta=25degCのTypicalでまとめています。

実際の動作条件はVs=+-5Vで、回路構成としては積分回路(LPF)と減算回路(比例制御)で利用しています。

また、実際のD級アンプに実装した際の出力電圧のオフセットの実測値をL, Rおよび絶対値の平均もまとめています。

最後に、オペアンプの実売価格を参考としてあげています。

パラメータの選定に関して、D級アンプ全体の音質への影響としては低周波での積分回路におけるオープンループゲイン、入力電圧オフセット、電圧ノイズ密度が支配的と考えています。また、入力電圧オフセットの温度ドリフトおよび温度上昇に影響する消費電流も変動要素として支配的と考えています。

結論として、これら8つのオペアンプで音質的に大きな変化がある回路ではないですが、それでも実際の聴感で判別できる程度の差異はあります。

傾向と特徴をあげておきます。

  1. オープンループゲインの増大に伴い、音の躍動感が増す。(LM4562, MUSES8920, LT1213)
  2. 電圧ノイズ密度の減少に伴い、音の奥行き感が増す。(ADA4075-2)
  3. GB積の大きなオペアンプで、最終的な電圧オフセットが大きくなるものがある。(LT1213, NJM2068)

電流モードのD級GaN MOSFETアンプのDC結合化

電流モードのD級GaN MOSFETアンプの入力をDC結合に変更してみました。

 

変更といっても簡単で、入力負荷抵抗(100kΩ)と結合コンデンサ(22uF)を取り除き、

入力をゲイン抵抗に直結するようにして、

ゲイン抵抗(10kΩ)と帰還抵抗(200kΩ)の値を変更しただけです。

 

LTSpiceによるシミュレーションによると、

DCカットのための1Hz前後のポールはなくせますが、

ゲイン抵抗と帰還抵抗の定数の影響で、

大振幅時の歪率(THD20)は若干、悪化します。

LTSpiceの回路図はこちらになります。

 

DC結合に変更後の実際の基板です。

左上の2Pの入力コネクタの右側の4つの部品を変更しました。

 

LT1057にDC結合していますが、

オフセット電圧はほとんど変化しません。

音を聞く限りも変化はほとんど感じません。

 

結合コンデンサ(UES1E220MEM)がなくなると、

音が激変するようなレビューをよく見ますが、

今時のバイポーラ電解コンデンサで

そんなことはおこらないようです。

 

 

 

3レベルPWM D級アンプの基板設計の改良

3レベルPWM D級アンプの基板設計の改良です。

回路図は定数と部品(電流検出抵抗、LPFのMLCCなど)を

若干変変更しています。

配線図です。

制御部を左側に集めて、電力変換部を右側に集めています。

基板上面のベタパターンです。

BTLなので、電力変換部のグランドを局所化して、

電源レールの取り回しを工夫しています。

また、

スイッチングノードやスナバ回路を局所化しています。

主に左から、制御部電源(-5V, +5V),

ハーフブリッジドライバ電源(+15V(-50V基準)),

パワーグランド(0V)です。

基板下面のベタパターンです。

主に、左から、アナロググランド(0V)、

ハーフブリッジドライバグランド(-50V)、

電源レール(+-50V)です。

フルブリッジ構成で、

制御部のICが10個になるなど、

部品点数が多いので、

レイアウトするだけでも、

なかなか大変です。

 

電流モードのD級GaN MOSFETアンプのオペアンプとコンパレータ音質比較

 電流モードのD級GaN MOSFETアンプで、

これまでLT1057LT1016で十分満足な音質を得ていますが、

いくつか異なるオペアンプ(ADA4001-2, LT6275)とコンパレータ(LT1713)を入手して聴き比べてみました。

 

まず、LT1057とLT1713の組み合わせです。

コンパレータの伝播遅延の違いがどう出るかという比較です。

結果としては、LT1713にすると音が太くなりました。

LT1057は低音がかなり気持ちいい感じです。

 

つぎに、ADA4001-2とLT1713の組み合わせです。

JFETオペアンプでDCゲイン、GB積、スルーレートの違いがどう出るかという比較です。

ADA4001-2はモニターライクな感じで、緻密な感じになります。

 

最後に、LT6275です。

電流帰還型のBJTオペアンプで、オフセット、GB積、スルーレートの違いがどう出るかという比較です。

これは、かなりいい感じです。

低音だけでなく高音の質感が素晴らしい。

 

SOP(1.27mmピッチ)/MSOP(0.65mmピッチ)の変換基板の半田付けが面倒ですが、

いろいろ試してみる価値はあります。

 

 

 

 

電流モードのD級GaN MOSFETアンプの試作

電流モードのD級GaN MOSFETアンプを試作しました。

LT1057でPI制御(インダクタ通過前の電圧とインダクタ通過後の電圧状態フィードバック)、

LT1995で電流状態のフィードバック(インダクタ通過後の電流検出)をLT1016に対して行っています。

また、今回は高耐圧のMLCCでLPFとZobelのフィルムコンデンサを置き換えています。

基本回路はいつも通り、ゲートドライバはSi8244,

出力段はTPH3206PSBです。

保護回路として、

LM339でUVPとDCPを実装しています。

 

LT Spiceシミュレーションでは、電圧モードの自励発振式と比較して、

無入力時の可聴帯域におけるノイズフロアが15から20dB程度下がることがわかっています。

 

電流モードの自励発振式における無入力時の出力電圧のFFT

電圧モードの自励発振式における無入力時の出力電圧のFFT

 

実際、試聴してみても電源の整流ハムノイズが明らかに下がります。

音質的にはLPFによるピークが下がる分、

電圧モードよりも相対的に高域はおとなしくなりますが、

低域の明瞭感は明らかに向上します。

 

3レベルPWM D級アンプの回路設計

フルブリッジD級アンプの方式を調べていて、3レベルPWMを見つけました。

D級パワー・アンプの回路設計

3-level PWM vs 2-level PWM

 

回路の動作を理解するために、LT SPICEでシミュレーションしてみました。

LT1058でPI制御と電圧および電流状態制御を行っています。

LT1057で電圧センシング、LT6106で電流センシングを行っています。

LT1364で400kHz,+-3Vの三角波を生成しています。

過電流制御はウィンドウコンパレータ(LM393)で行っています。

 

20kHz, +-1Vの矩形波入力時の過渡応答です。

PWM変調の波形を見ると、三角波の頂点に対して上下左右対称にフェーズシフトしている様子がわかります。

デッドタイムはZVSになるように調整しているので、常にソフトスイッチングすることになります。

 

20kHz,+-0, 0.25, 0.5, 1Vの正弦波入力時の過渡応答です。

フルブリッジなので、電源電圧の2倍までの振幅が得られます。

他励式なので、スイッチング周波数は一定です。

 

FFTで周波数領域を見てみます。

20kHzと400kHzに入力(正弦波)と搬送波(三角波)のスペクトルがたっていて、

高調波も確認できます。

スイッチング周波数は等価的に2倍になり、変調ノイズ成分も出力電圧に比例するため、

ローノイズです。