LT1166による3段ダーリントンBJTアンプの最適バイアス抵抗

2N5551, 2N5401, TTC004B, TTA004B, TTC5200, TTA1943を用いた、LT1166による3段ダーリントン(Triple)BJTアンプの最適バイアス抵抗をまとめておきます。

こちらのリンクが参考になります。

良く使われる回路での高域特性限界: 4、フォロワ型アンプ出力段 (ダーリントンの有無)

3段ダーリントンBJTアンプの回路図

まず、LTSpiceによる回路図をしめします。結論としては、プリドライバ段のエミッタ抵抗を680Ω(3.3mA)、ドライバ段のエミッタ抵抗を47Ω(12mA)、パワー段のエミッタ抵抗を0.22Ω(91mA)としています。

ドライバ段の値はパワー段を最大入力時に必要なベース電流(hfe=100)から決まってきます。

問題はプリドライバ段の最適値で、こちらは(R21={470, 680, 1k})として、シミュレーションで決定しています。アイドル時の出力点(D)の電圧のFFTを示します。

アイドル時の出力電圧の周波数特性

緑: 470, 青: 680, 赤: 1kですが、青は振動が収まっています。LT1166のゲイン交点は1.2MHz程度ですが、DC安定度にかなり影響が出ます。

実際、バイアス電流が不足すると4kHz程度にうなり(耳障りな発振音)が発生します。

LT1166による3段ダーリントンBJTアンプの位相補償

2N5551, 2N5401, TTC004B, TTA004B, TTC5200, TTA1943を用いた、LT1166による3段ダーリントン(Triple)BJTアンプの位相補償をまとめておきます。

こちらのリンクが参考になります。

良く使われる回路での高域特性限界: 4、フォロワ型アンプ出力段 (ダーリントンの有無)

3段ダーリントンBJTアンプの回路図

まず、LTSpiceによる回路図をしめします。プリドライバ段のエミッタ抵抗を1kΩ(2.5mA)、ドライバ段のエミッタ抵抗を100Ω(12mA)、パワー段のエミッタ抵抗を0.22Ω(91mA)としています。

LT1166でパワー段のアイドル電流は制御していますが、プリドライバ段とドライバ段のアイドル電流で動作点が変わるようです。

プリドライバ段、ドライバ段、パワー段のアイドル電流

さらに、位相補償として、R24(U2: フィードフォワードのフィードバック抵抗)を5.1kΩ、R5(U3: カレントソースドライブのフィードバック抵抗)を1.8kΩとしています。

電圧増幅(A), フィードフォワード(B), カレントソースドライブ(C), 出力(D)のゲイン位相図

1MHz-30MHzの直線性が改善しています。

また、寄生インダクタンスの影響を低減するため、プリドライバ段、ドライバ段、出力段はPCB上で、できるだけ近くに配置することが必要なようです。

LT1166による3段ダーリントンBJTアンプの発振対策

2N5551, 2N5401, TTC004B, TTA004B, TTC5200, TTA1943を用いた、LT1166による3段ダーリントン(Triple)BJTアンプの発振対策をまとめておきます。

3段ダーリントンBJTアンプの回路図

まず、LTSpiceによる回路図をしめします。プリドライバ段、ドライバ段、パワー段に1Ωのベースストッパーを入れています。

つぎにプリドライバ段とドライバ段のエミッタ抵抗を調整します。

パワー段のバイアス電流はLT1166で0.22Ωのエミッタ抵抗で、90.8mAに制御されます。

次に、パワー段のhfeを100倍程度として、ドライバ段のエミッタ抵抗を0.22x2x100=440~=470Ωに設定します。

最後に、プリドライバ段とドライバ段のベース電流がほぼ同じ値(43.1uAと41.0uA)になるように、プリドライバ段のエミッタ抵抗を47Ωに設定します。

これらのエミッター抵抗値では、プリドライバ段、ドライバ段、パワー段のコレクタ損失はそれぞれ、248mW, 1.29W, 4.35Wになります。

プリドライバ段のエミッタ抵抗=470Ωのパワー段の出力電圧の周波数特性

アイドル時のプリドライバ段のエミッタ抵抗=470Ωのパワー段の出力電圧の周波数特性です。発振は見られません

プリドライバ段のエミッタ抵抗=390Ωのパワー段の出力電圧の周波数特性

同様に、プリドライバ段のエミッタ抵抗=390Ωのパワー段の出力電圧の周波数特性です。こちらは発振が見られます。

プリドライバ段のエミッタ抵抗=510Ωのパワー段の出力電圧の周波数特性

最後に、プリドライバ段のエミッタ抵抗=510Ωのパワー段の出力電圧の周波数特性です。こちらも発振が見られます。

これらのシミュレーション結果から、3段ダーリントンのプリドライバ段とドライバ段のエミッタ抵抗の設定は、かなりシビアなことがわかります。

LT1166による3段ダーリントンBJTアンプの試作

2N5551, 2N5401, TTC004B, TTA004B, TTC5200, TTA1943を用いた、LT1166による3段ダーリントンBJTアンプを試作しました。

3段ダーリントンBJTアンプ基板

以前に試作したAB級コンプリメンタリBJTアンプの基板をさらにモディファイしています。元のドライバ段のダイオードとエミッタ抵抗を除去して、プリドライバ段のTO-92のトランジスタ(2N5551, 2N5401)とプリドライバ段とドライバ段のバイアス抵抗(300Ω, 75Ω)を組み込みました。3種類のトランジスタですべてピン配置が異なる(EBC, ECB, BCE)ので、配線に注意が必要です。

3段ダーリントンBJTアンプの全体

アイドル時の出力オフセットはLch: 4.8mV, Rch: -1.7mVとなりました。

電源はPFC+LLC+CMフィルタの構成で、アイドル時の出力電圧は+-47V程度です。

動作時の発熱は、ヒートシンクが暖かくなる程度です。

音質は、ノイズフロアが下がり、低音はキックやベースが明瞭になり、高音はハイハットやシンバルの余韻が心地よいです。ボーカルもよりソウルフルに感じます。オーディオパワーアンプの場合、120dB以上のDCゲイン(hfe)がないと十分な感じにならないようです。

LT1166による3段ダーリントンBJTアンプの回路設計

2N5551, 2N5401, TTC004B, TTA004B, TTC5200, TTA1943を用いた、LT1166による3段ダーリントン(Triple)BJTアンプの回路設計をまとめておきます。

3段ダーリントンBJTアンプの回路図

まず、LTSpiceによる回路図をしめします。パワーBJTのSpiceモデルは2SC5200, 2SA1943で代用しています。回路の特徴としては、1段目(Pre-driver)と2段目(Driver)はA級動作で、3段目(Power)はLT1166によりカットオフしないAB級動作になります。

3段ダーリントンBJTアンプの周波数特性

AC解析による周波数特性です。ゲイン27dB, fc=56kHz, ゲイン交点911kHz, 位相余裕71degとなります。パワー段のft=4MHzまで、位相余裕は十分あります。

3段ダーリントンBJTアンプのアイドル時の出力のFFT

アイドル時の出力電圧のFFTです。ノイズフロアが-200dBとなり、fc=56kHz以降は直線的に下がります。バイアス電流はそれぞれ、プリドライバ段が8.2mA(300Ω)、ドライバ段が17mA(75Ω)、パワー段が92mA(0.44Ω)となります。

損失はプリドライバ段が380mW, ドライバ段が820mW, パワー段が4.4W, プッシュプルなので全体で11W程度です。

3段ダーリントンBJTアンプの10kHz, 1.5V正弦波入力時の出力のFFT

10kHz, 1.5Vの正弦波入力時の出力のFFTです。100Wクラスの出力で、ノイズフロアは-100dB程度まで上昇します。ダイナミックレンジとしては120dBを超えます。