LTspiceによるTLSスピーカーエンクロージャーの設計(その4)

LTspiceを用いて有限要素法による音響管の1次元モデルのシミュレーションを行い、音響管の開口端の半径による開口端補正の影響を確認します。

音響工学原論 4・5・6 管の開口端の補正より、管の開口端付近の音場の等音位面はこのようになるようです。

管の開口端付近の音場の等音位面

また、式(73)に鍔の付いた一方を閉じた短管の開口端補正長αは半径をaとするとα=8a/3π=0.85aとあります。

この値に基づいて、音響管の長さを2.5+0.85a [m](λ0=10[m], f0=34 [Hz])、音響管の断面積を振動板面積の1.4倍(1.4*0.0147 [m^2])、音響管の開口端の半径をスピーカーユニットの振動板半径(0.0685m)を基準に0.25, 0.5, 1, 2, 4倍に変化させて、開口端からの出力の共振周波数と群遅延をシミュレーションしています。

分布定数回路による音響管の音響回路

こちらがAC解析の結果で、紫が4倍、水色が2倍、赤が1倍、青が0.5倍、緑が0.25倍のときの出力(体積流)と群遅延になります。

音響管の開口端の半径による共振周波数および群遅延の変化

音響管の開放端の半径に応じて共振周波数とゲインが変化することがわかります。群遅延の大きさはほぼ一定です。

結論としては、TLSの場合、開放端補正後の共振周波数とゲインは開放端の半径に依存するため、0.25から4倍程度の範囲で共振周波数(20Hz程度の範囲)とゲイン(15dB程度の範囲)のトレードオフを調整できるようです。

広告