MOSFETの寄生発振条件

MOSFETの寄生発振条件をまとめておきます。

こちらのアプリケーションノートが参考になります。

パワーMOSFET 寄生発振、振動

例として次の2つのMOSFETを取り上げます。

IRF200B211

IRFP250N

まず、アプリケーションノートの図2.21を引用しておきます。

寄生発振等価回路

アプリケーションノートの式(12)が発振条件で、

gm >= (Cgs/Cds)/R3

となって、R3(ドレイン・ソース間等価抵抗)はRg(ゲート抵抗)に反比例となっています。

具体的な数値例を挙げておきます。

IRF200B21: gfs=13S, Ciss=790pF, Coss=62pF, Crss=21pF

gm=gfs=13, Cgs/Cds=(Ciss-Crss)/(Coss-Crss)=(790-62)/(62-21)=18.8

IRFP250N: gfs=17S, Ciss=2159p, Coss=315p, Crss=83p,

gm=17, Cgs/Cds=(2159-83)/(315-83)=8.95

となって、仮にR3=1Ωとした場合、IRF200B21は発振条件を満たしませんが、IRFP250Nは発振条件を満たすことがわかります。

実際のD級アンプの設計では、ゲート抵抗の値とデッドタイムは出力LPFのインダクタに依存するため、発振しない十分大きなゲート抵抗値でデッドタイムを決定する形になります。

ゲートゾーベルとスナバ回路の設計

ゲートゾーベルはゲートとドレイン間のスナバ回路なので、
スナバ回路の設計をいろいろ検索してみたところ、
アプリケーションノートがたくさん見つかりました。

AN11160 Designing RC snubbers
Switcher Efficiency & Snubber Design
AN-4147 Design Guidelines for RCD Snubber of Flyback Converters
アプリケーションノート3835 CCFLプッシュ/プルスナバ回路
パワースイッチ向けの抵抗器-コンデンサ(RC)スナバ設計
高速DC/DCコンバータのスイッチノードで発生するリンギングの抑制 Part 3/4

AN11160によると、

まず共振周波数を測定し、

次に寄生容量を測定して、

寄生インダクタンスを計算します。

あとは臨界制動になるようにスナバ回路の

容量値と抵抗値を決めれば良いようです。

ゲートストッパーとトップおよびボトムのゲートゾーベルが干渉するので、

一度、ゲートストッパーとゲートゾーベルを取り除いてから、

20kHzの矩形波応答で測定を行いました。

また、容量を追加して発振周波数を測定するときは、

トップまたはボトムのMOSFETそれぞれ独立に容量を追加して測定した方が良いようです。

 

かなり試行錯誤が必要ですが、

シミュレーションで測定したところ以下の値を得ました。
共振周波数(fring0): 16.4MHz
10pF(Cadd)を追加した時の共振周波数(fring1): 14.1MHz
寄生容量(Clk): 28.5pF
寄生インダクタンス(Llk): 3.30uH

スナバ抵抗(Rs):170Ω -> 180Ω

スナバ容量(Cs):57pF -> 56pF

ゲートストッパーは68Ωでよいようです。

 

以前のルールオブサムのゲートゾーベルの値(Rs=47Ω, Cs=100pF, Fc=33.9MHz)にくらべて、

シミュレーションによる理論値(Rs=180Ω, Cs=56pF, Fc=15.8MHz)は、

カットオフ周波数(Fc)がおよそ半分になっているので、

ゲートストッパーが100Ωから68Ωで済むため、

GaN MOSFETをより高速でドライブできるようです。

 

GaN MOSFETアンプの発振対策

GaN MOSFETアンプの設計で、

SPICEシミュレーションを用いて、

ganampascgz

周波数応答、

ganamp_fr

矩形波応答、

ganamp_pr

静止バイアス電流、

正弦波応答を観察しながら

パラメータを詰めた結果をまとめておきます。

 

まず、GaN MOSFET(TPH3205B)に限らず、

入力容量が1000pFを越えるようなMOSFETをパワー段に用いると

ゲート電圧に寄生発振が起きるのが普通です。

 

今回は47Ω+100pFのゲートゾーベル(Gate Zobel)をゲートとドレイン間に設定して

100Ωのゲートストッパーでも抑制できない寄生発振を抑えています。

 

また、オペアンプ(LT1360)のI/V変換により電源ピンでゲートをドライブしていますが、

ゲイン余裕と位相余裕を得るためにフィードバック抵抗の値を3.3KΩから1.5KΩに下げています。

この値でも、1V, 20KHzの正弦波でのTHDが0.0058%となっています。

 

もちろん、基本的な対策として、

ドライバ段のBJT(2SC4883A, 2SA1859A)のベースストッパー(33Ω)と

パワー段のMOSFETのゲートストッパー(100Ω)は、最初から入れてあります。

 

一方、自動バイアス(LT1166)の

バイアス電流の検出抵抗値(0.1Ω+0.1Ω)と

電流制限の検出抵抗値(0.1Ω)を個別に設定し、

パワー段のMOSFETの

静止バイアス電流が100mA、

電流制限が13Aに設定しています。

 

また、ドライバ段の静止バイアス電流は、

100Ωのコレクタ抵抗と100Ωのエミッタ抵抗による

エミッタディジェネレーションで、27mAになっています。

MOSFETを高速でターンオフするためには、

ゲート容量を短時間で抜く必要がありますが、

その時間はこのドライバ段の静止バイアス電流で決まります。

 

駆動能力の確認として、

スピーカー相当の抵抗負荷を8Ωから2Ωまで下げてみても、

大きな貫通電流は生じず、1Ωから0Ωにした場合でも

ゲート電圧が18Vを越えないのでロバスト性も十分なようです。