ADP1074を用いた電源のパラメータ設計

ADP1074を用いてハイサイド・アクティブクランプ・

フォワードコンバータを設計する際のポイントをまとめておきます。

AN-1454 アプリケーション・ノートも参考にしてください。

 

LT Spiceの回路図はこちら。

電源起動時の過渡解析の結果

(緑:正側出力(+50V), 茶:SS1, シアン:(FB), 赤:(SS2), 黄土(Comp))

はこちら。

 

まず、ソフト・スタート手順の

1次側と2次側のハンドシェークの条件を満たすためには、

SS1とSS2のコンデンサの容量を調整する必要があります。

シミュレーションでは起動後29-30msの期間に、

SS1の電圧が600-800mVの間にあるように調整する必要があります。

また、SS1とSS2の電流レートが2倍程度異なるので、

容量比を2倍程度にすると、一様に電圧が上昇していきます。

 

なお、最終的には、SS2とFBの電圧が1.2Vを超えた時点で、

強制的に2次側に制御が移るとデータシートには、

記述があります。

一方で、ハンドシェーク後にSS1の電圧は0Vになるという記述が

データシートにはありますが、

SPICEモデルでは、5Vまで上昇し続けます。

 

次に、FBおよびCompによるエラーアンプのループ補償ですが、

ゲインを10dB(3倍)程度に設定しないと、

適切なレギュレーションが得られません。

なので、まず、FBの上側(出力電圧)の抵抗値を決めて、

Compの抵抗値をその3倍程度に設定します。

その後、スイッチング周波数に応じて

Compの容量値をスケールするように設定します。

 

続いて、スロープ補償ですが、

デッドビート(k=1)で設定すると、

Compが大きく振れて電流制限にかかるため、

ノーマル(k=0.5)で設定しています。

 

1次側のデッドタイムは、154nsに設定しないと、

ハイサイド・アクティブクランプのための

位相反転やハイサイドドライバの伝播遅延が大きいため、

PGATEがラッチしてしまうようです。

 

最大デューティ・サイクル(Dmax)は、十分大きく設定しないと、

起動時や高負荷時にヒカップモードに移行してしまうようです。

なので、巻線比は0.6ですが、Dmaxは90%に設定しています。

 

軽負荷モード(Mode)は、3つの状態が設定できるようです。

具体的には、

LLM(常時ボディダイオードによるダイオード整流)、

スレッショルド(軽負荷時は非同期整流、重負荷時は同期整流)、

CCM(常時同期整流)の3つになります。

 

なお、スレッショルドはCSの状態によるので、

ランプ補償の設定抵抗の影響を受けます。

 

最後に、同期整流用MOSFETの耐圧ですが、

フリーホイール・ドライバ側(SR2)は2次側のトランス出力電圧とサージ電圧ですが、

フォワード・ドライバ側(SR1)は1次側の電圧とサージ電圧になるようです。

なので、150V耐圧のIPP076N15N5, IPP075N15N3

などを選択しています。

 

250W ZVS-PSFB 50V正負電源のループ補償

250W ZVS-PSFB 50V正負電源のループ補償の設計手順をまとめておきます。

資料としては、以下のデータシートやアプリケーションノートが参考になります。

Application Note 149 Modeling and Loop Compensation Design of Switching Mode Power Supplies

LT8311 Synchronous RectifierController with Opto-Coupler Driver for Forward Converters

LTC3722-1/LTC3722-2 同期整流式デュアル・モード位相変調フルブリッジ・コントローラ

LT4430 2次側オプトカプラ・ドライバ

HCPL-4506/J456/0466, HCNW4506 Intelligent Power Module and Gate Drive Interface Optocouplers

HCPL-4506 Digital/Analog Optocoupler SPICE Model

5KV LED EMULATOR INPUT, OPEN COLLECTOROUTPUT ISOLATORS

Digital Isolator Evolution Drives Optocoupler Replacement

AN681 USING THE Si87XX FAMILY OF DIGITAL ISOLATORS

AN729 REPLACING TRADITIONAL OPTOCOUPLERSWITH Si87XXDIGITAL ISOLATORS

 

まず、帰還ループのトポロジーです。

LT4430のデータシートの図6aを参照します。

この図のPRIMARY-SIDE ERROR AMPはLTC3722-1のエラーアンプに、

オプトカプラはHCPL-4506もしくはSi8710Aに対応します。

LT4430のデータシートの図5から

R1, R2は出力電圧から簡単に決まります。

ここでは、Vout=100V, R1=200k, R2=1.2kとします。

 

次にRc, Rdは、LT8311 Figure 16, 17を参考に決定します。

 

LTC3722-1ブロック図とエラーアンプの特性値です。

LT4430のブロック図とエラーアンプおよびオプトドライバの特性値です。

AN681よりSi8710のブロック図と電流制限抵抗(Rf)の計算式です。

AN729よりSi8710A/Bの伝達特性とグレード別の最適電流(If)です。

 

LT8311のOpto-Coupler Design Guidanceに従うと、

Step 1:

LTC3722-1のエラーアンプはユニティゲイン構成なので、R1=R2とみなします。

Step 2:

LTC3722-1のエラーアンプはVref=1.2V, Vc_low=Vol=0.18Vとなります。

Vx_max=1.2*2-0.18*1=2.04V

Step 3:

AN729よりSi8710Aの場合、Iopto_out_high=3.0mAとします。

またRc=Reとみなして、

Rc=Re=2.04V/3.0mA=680 Ohm

Step 4:

Si8710Aの場合CTR_min=1とします。

If_high=3.0mA/1=3.0mA

Step 5:

Vopto(max)=Opto Driver Output Swing High=Vin -1.05=5.1-1.05=4.05V

Si8710Aの場合Rd=Rf, Vopto(max)=Vf, If_high=Ifなので、

Rd=Rf=(4.05V-2.0V)/3.0mA=680 Ohm

 

次に、Type IIループ補償の設計パラメータとして、

Cc, Ck, C1を除いて単純化し、

R3, C2, C3を決定します。

 

AN149の

Modeling New Power Stage with Closed Current Loop

Loop Compensation Design of a Current Mode Converter

Design Type II Compensation Network of Voltage-Loop ITH Error Amplifier

にしたがいます。

C2=Cthp, C3=Cth, R3=Rth,

fs=160kHz, fc=fs/6=26.7kHz,

LT4430のブロック図から入力抵抗2k Ohm,

Opto Driver –3dB Bandwidth=600kHz

なので、

エラーアンプのゲインカーブから、

gm=10(20dB@600kHz)として、

C2=Cthp=220pF, C3=Cth=1uF,

R3=Rth=10*2k=20k Ohm, Ro=1Meg Ohmとすると

fp0=1/(2*3.14*1uF*1Meg Ohm)=0.159Hz

fz1=1/(2*3.14*20k Ohm*1uF)=7.96Hz

fp2=1/(2*3.14*20k Ohm*220pF)=36.2kHz

 

最後に過渡応答をLT Spiceで確認してみます。

LT4430とHCPL-4506でループ補償を行っています。

1k Ohmの負荷抵抗での起動時の過渡応答です。

緑が出力電圧(Vout),

青が出力インダクタ電流(Il),

赤がLTC3722-1のエラーアンプ出力(Vcomp)です。

まず、電源起動後に急速にデューティー比が大きくなって、

突入電流が立ち上がります。

続いて、インダクタ電流がCCMで減衰していきます。

最後に、出力電圧が+50V(目標正レール電圧)に到達すると、

スムーズにインダクタ電流がDCMに移行しています。

出力電圧が定常状態になって、

出力電流が急速に減少する際にも、

エラーアンプ出力もアンダーシュートがないことが確認できました。