コンデンサインプット電源は理想の電源か?

コンデンサインプット電源の考察をまとめておきます。

以下のリンクが参考になります。

力率改善回路(PFC)

SiC SBDとCRCフィルタによるコンデンサインプット電源

オーディオパワーアンプ用の電源としては、商用電源(100V 50/60Hz AC)をトランスで降圧して、ダイオードブリッジで整流し、平滑コンデンサで出力電圧のリップルを平滑する正負電源が一般的です。

これまでも理想ダイオード(MOSFET)、SiC SBD、CRフィルタ、LRフィルタなどを組み合わせたものを試作してきました。

ところが、試作の結果として、スイッチング素子(ダイオードブリッジ)を変えるとスイッチングノイズ(リカバリノイズ)は下がりますが、それ以外のノイズは下がりません。

なぜなら、コンデンサインプット電源はスイッチング周波数が100/120Hzのスイッチング電源に他ならないからです。

いくら物量を投入してリップル電圧を下げたとしても、商用電源からみた力率は低下し、電流インパルスによる電流高調波の影響は避けられません。

しかもスイッチング周波数がオーディオ周波数帯域の低域にあるため、パッシブフィルタによる対策が容易ではありません。

たとえば、仮に2次CRローパス・フィルタの構成を取るとすると、0.33Ω/10000uFをカスケードして、fc=48Hzとなります。-12dB@100Hz程度になります。

これが、fsw=100kHzのスイッチング電源であれば、0.1Ω/33uFでfc=48kHz, -12dB@100kHzが容易に得られます。実際には小型のパワーインダクタが使えるので、LRフィルタで2倍の減衰率が容易に得られます。

また、PFCによる力率改善の効果は特に低域の聴感で顕著になります。

コンデンサインプット電源の場合、商用電源から低い力率と周波数で切り離されてしまい、電解コンデンサのDC電圧が後段の実質的な駆動力になります。

一方、PFCで400Vに昇圧してからLLCコンバータで降圧する形では、高い力率と周波数で商用電源のパワーが伝達されます。

つまり、タンクで供給するか、ポンプで供給するかの違いになります。

実際の設計では、スイッチング電源のトレードオフはコモンモードノイズにあるので、こちらの対策が大事になります。

広告

絶縁とケーブルと音質の関係

高価なケーブルはいい音がすると思いますか?

値段に応じた品質しか手に入らないというのは、単なる思い込みです。

値段は希少性に付いているのであって、音質に付いているわけではありません。

業者は、高価なケーブルを買ってしまう希少なあなたを狙っているわけです。

もちろん、高価なエフェクターと割り切って買う分には問題ありません。

電気工学的には当たり前ですが、心理学的には不都合な真実をまとめておきます。

まず、絶縁をすると何がおきるのか、試してみてください。

信号ケーブルを買い換える前に、絶縁トランス(HD400)を試してみてください。

電源ケーブルを買い換える前に、絶縁トランス(ギタリスト電源)を試してみてください。

アンプとスピーカーを信号系と電源系から絶縁するだけで、音が激変すると思います。

これはなぜでしょうか?

信号系は、PCであろうが、CDトランスポートであろうが、AD/DAであろうが、グランドに起因するノイズを伝播します。それを絶縁するわけです。もちろん、絶縁トランスの帯域に起因する問題とのトレードオフですが。

電源系も同様です。日本の場合、ニュートラルが接地されているので、完全に絶縁するためには、電源トランスで行うか、絶縁トランスを使用しているAC/DCコンバータを使用します。

トランスで減圧した後にSiC SBDなどで整流する場合、電源の周波数に起因する整流ノイズ(100/120Hz)は避けられないことに注意が必要です。

なので、良くできた絶縁型AC/DCコンバータ(PFC/LLC)の方が、可聴帯域の2次側のノイズは、低くなることに注意が必要です。

また、信号系のDC結合とAC結合も低域のカットオフとグランド起因のノイズのデカップリングとのトレードオフになることに注意が必要です。

回路や方式はモデルであって、実際の実装に起因するトレードオフは捨象されていることに注意が必要です。

マーケティング的には、不都合な真実は決して語られることがありません。

科学的な文脈と心理学的な物語は別物です。

正負電源のラッチダウン

3端子レギュレータで正負電源を構成するときは、

ラッチダウン防止のためにSBDを保護回路として入れるように、

データシートに記述があるので認識していましたが、

同期整流で正負電源を構成するときも必要になるようです。

 

実際、フォワードコンバータによる正負電源の起動時に、

耐圧の異なる同期整流用のMOSFETが

フォワード用とフリーホイール用のいずれも、

正側だけ飛んでしまったので、

ラッチダウンと判断しています。

 

というわけで、正負電源のラッチダウンに関する資料をまとめておきます。

電源回路のトラブル事例と対策

三端子レギュレータについて

リニアレギュレータの逆電圧保護

アプリケーションノート YDSV500シリーズの原理と応用 非絶縁DC-DCコンバータ

正負両電源に最適なカップルド・インダクタ

トランジスタ技術 2003年8月号 特集:ディジタル・アンプ誕生

第6章 出力電圧の精度と電源容量の決め方がポイント!
ディジタル・アンプ用電源回路の設計 :本田 潤   見本PDF 252Kバイト

Appendix
実際のディジタル・アンプ用スイッチング電源 :大和 一夫/狩野 ラワジフ

を読んでいて以下の記述を見つけました(p. 190)。

正負両電源に最適なカップルド・インダクタ

●軽負荷になると出力電圧が上昇する

>コイル電流のゼロ区間が生じることが原因

●対策はコイルに電流を流し続けること

>コイル電流にゼロ区間が生じる回路のコイルと、

コイル電流が流れ続ける回路のコイルとで、

コアを共有すると電流が連続的になります。

>>さて、D級出力段の電源は、

正負の出力回路のうち、

どちらか一方は必ず電流が流れているはずです。

となれば、カップルド・インダクタが

ディジタル・アンプ用電源に適していることは

自明の理ですね。

 

というわけで、LTSpiceで効果を検証してみました。

 

まず、LTC3722-1によるZVS-PSFBの

CTトランス(760895451)による正負両電源に、

カップルド・インダクタ(744844470)を適用した回路です。

センタータップによる両電源構成なので、

正負の電流の向きを考慮して、

カップルド・インダクタ(コモンモード・チョーク)を

平滑コンデンサの前に接続します。

 

次に、軽負荷(1kΩ, 100V(+-50V), 0.1A, 10W)時の

結合係数1の場合と0の場合における、

出力電圧(緑)とチョークコイルの電流(青)の

過渡解析による比較です

結合あり

結合なし

 

最後に重負荷((33Ω, 100V(+-50V), 3A, 300W)時の場合です。

結合あり

結合なし

 

興味深いことに結合ありの時は、

インダクタ電流の振幅(リップル)が小さくなって、

最大出力電圧が増大するようです。

 

磁気回路は奥が深いですね。

150W ZVS-PSFB 50V正負電源の基板設計

150W ZVS-PSFB 50V正負電源の基板設計です。

PFCプリレギュレータからDC 382Vで給電します。

 

トランスが大きくて100mmx80mmの基板サイズに収まらないので、

760895651にサイズダウンしました。

 

また、コントローラを載せるスペースがないため、

メイン基板とドーター基板の構成にしました。

 

メイン基板の回路図です。

メイン基板の配線図です。

メイン基板の部品面のベタパターンです。

1次側はDC 382Vなので、Isolateを1.524mmとしています。

メイン基板の半田面のベタパターンです。

 

LTC3722-1LTC1693、補助電源(12V)回路を載せるための

ドーター基板の回路図(60mmx40mm)です。

ドーター基板の配線図です。

ドーター基板の部品面のベタパターンです。

ドーター基板の半田面のベタパターンです。

 

LT1249によるPFCの基板設計

LT1249によるPFCの基板設計をまとめておきます。

LTC3722-1によるZVS-PSFB正負電源のプリレギュレータ

(商用電源(AC 100-230V)からバス電源(DC 382V))として使用します。

 

回路はLT1249のデータシートのものとほぼ同じです。

主要部品としては、

リングコアチョークにB82615B2602M001

スイッチングMOSFETにIPA60R280CFD7

整流ダイオードにSTTH8S06FP

を選択しています。

 

部品の配置はこんな感じになりました。

 

部品面のベタパターンです。

 

半田面のベタパターンです。

 

部品数が少ないので、比較的簡単ですが、

高電圧ノードとスイッチングノードに気をつける必要があります。

 

 

250W ZVS-PSFB 50V正負電源のループ補償

250W ZVS-PSFB 50V正負電源のループ補償の設計手順をまとめておきます。

資料としては、以下のデータシートやアプリケーションノートが参考になります。

Application Note 149 Modeling and Loop Compensation Design of Switching Mode Power Supplies

LT8311 Synchronous RectifierController with Opto-Coupler Driver for Forward Converters

LTC3722-1/LTC3722-2 同期整流式デュアル・モード位相変調フルブリッジ・コントローラ

LT4430 2次側オプトカプラ・ドライバ

HCPL-4506/J456/0466, HCNW4506 Intelligent Power Module and Gate Drive Interface Optocouplers

HCPL-4506 Digital/Analog Optocoupler SPICE Model

5KV LED EMULATOR INPUT, OPEN COLLECTOROUTPUT ISOLATORS

Digital Isolator Evolution Drives Optocoupler Replacement

AN681 USING THE Si87XX FAMILY OF DIGITAL ISOLATORS

AN729 REPLACING TRADITIONAL OPTOCOUPLERSWITH Si87XXDIGITAL ISOLATORS

 

まず、帰還ループのトポロジーです。

LT4430のデータシートの図6aを参照します。

この図のPRIMARY-SIDE ERROR AMPはLTC3722-1のエラーアンプに、

オプトカプラはHCPL-4506もしくはSi8710Aに対応します。

LT4430のデータシートの図5から

R1, R2は出力電圧から簡単に決まります。

ここでは、Vout=100V, R1=200k, R2=1.2kとします。

 

次にRc, Rdは、LT8311 Figure 16, 17を参考に決定します。

 

LTC3722-1ブロック図とエラーアンプの特性値です。

LT4430のブロック図とエラーアンプおよびオプトドライバの特性値です。

AN681よりSi8710のブロック図と電流制限抵抗(Rf)の計算式です。

AN729よりSi8710A/Bの伝達特性とグレード別の最適電流(If)です。

 

LT8311のOpto-Coupler Design Guidanceに従うと、

Step 1:

LTC3722-1のエラーアンプはユニティゲイン構成なので、R1=R2とみなします。

Step 2:

LTC3722-1のエラーアンプはVref=1.2V, Vc_low=Vol=0.18Vとなります。

Vx_max=1.2*2-0.18*1=2.04V

Step 3:

AN729よりSi8710Aの場合、Iopto_out_high=3.0mAとします。

またRc=Reとみなして、

Rc=Re=2.04V/3.0mA=680 Ohm

Step 4:

Si8710Aの場合CTR_min=1とします。

If_high=3.0mA/1=3.0mA

Step 5:

Vopto(max)=Opto Driver Output Swing High=Vin -1.05=5.1-1.05=4.05V

Si8710Aの場合Rd=Rf, Vopto(max)=Vf, If_high=Ifなので、

Rd=Rf=(4.05V-2.0V)/3.0mA=680 Ohm

 

次に、Type IIループ補償の設計パラメータとして、

Cc, Ck, C1を除いて単純化し、

R3, C2, C3を決定します。

 

AN149の

Modeling New Power Stage with Closed Current Loop

Loop Compensation Design of a Current Mode Converter

Design Type II Compensation Network of Voltage-Loop ITH Error Amplifier

にしたがいます。

C2=Cthp, C3=Cth, R3=Rth,

fs=160kHz, fc=fs/6=26.7kHz,

LT4430のブロック図から入力抵抗2k Ohm,

Opto Driver –3dB Bandwidth=600kHz

なので、

エラーアンプのゲインカーブから、

gm=10(20dB@600kHz)として、

C2=Cthp=220pF, C3=Cth=1uF,

R3=Rth=10*2k=20k Ohm, Ro=1Meg Ohmとすると

fp0=1/(2*3.14*1uF*1Meg Ohm)=0.159Hz

fz1=1/(2*3.14*20k Ohm*1uF)=7.96Hz

fp2=1/(2*3.14*20k Ohm*220pF)=36.2kHz

 

最後に過渡応答をLT Spiceで確認してみます。

LT4430とHCPL-4506でループ補償を行っています。

1k Ohmの負荷抵抗での起動時の過渡応答です。

緑が出力電圧(Vout),

青が出力インダクタ電流(Il),

赤がLTC3722-1のエラーアンプ出力(Vcomp)です。

まず、電源起動後に急速にデューティー比が大きくなって、

突入電流が立ち上がります。

続いて、インダクタ電流がCCMで減衰していきます。

最後に、出力電圧が+50V(目標正レール電圧)に到達すると、

スムーズにインダクタ電流がDCMに移行しています。

出力電圧が定常状態になって、

出力電流が急速に減少する際にも、

エラーアンプ出力もアンダーシュートがないことが確認できました。

 

250W ZVS-PSFB 50V正負電源の設計

LTC3722-1 同期整流式デュアル・モード位相変調フルブリッジ・コントローラ

による250W ZVS-PSFB 50V正負電源を設計します。

その他、参考になる資料もあげておきます。

AN_201709_PL52_027: 800 W ZVS phase shift full bridge evaluation board

TND379N-D: Half-Bridge Drivers A Transformer or an All-Silicon Drive?

グリーン・エレクトロニクス No.1: 高効率・低雑音の電源回路設計

 

LT Spiceによるシミュレーション回路をあげておきます。

出力電圧の過渡応答はこのようになりました。

 

主な構成要素:

メイントランス(760895751)はLLC共振用のもので、

一次側は、PFC(LT1249)を想定した382Vの入力およびリークインダクタンスによるZVS-PSFBとしています。

二次側は、センタータップとダイオード(STPS20120D)整流およびLC平滑による正負電源としています。

また、補助巻線からダイオードブリッジとドロッパ(LT1086-12)で12Vの電源としています。

 

絶縁にはCT(CST25-0050), PT(1002C), オプトカプラドライバ(LT4430), オプトカプラ(MOC207)を用いています。

 

ZVS-PSFBコントローラ(LTC3722-1)のロジックレベルの出力を

ゲートドライバ(LTC1693-1)とPTで

左右それぞれのハーフブリッジのMOSFET(IPA60R280CFD7)を+-12Vで差動駆動しています。

 

平滑コンデンサの分割によるSiC SBD正負電源のリップルノイズ対策

平滑コンデンサを分割(Split Reservoir Capacitor)して整流平滑後にLPFを構成することにより、

商用電源の整流後のリップルノイズ(100Hzのハムノイズ)を12dB下げる

SiC SBD電源を試作しました。

主回路はSCS310AP x8, 6,800uF, 50V x8, 0.47Ω 10Wx2で構成しています。

2段目の1次CR LPFのコーナー周波数(fc)は

fc=1/(2*Pi*13,600E-6*0.47)=25Hz

となって、

-6dB/Octで減衰するため

リップルノイズへの効果としては

-12dB@100Hzとなります。

 

LT Spiceによるシミュレーション回路はこちら。

赤が1段目(平滑後)、緑が2段目(LPF通過後)の過渡解析による電圧波形です。

PCBのレイアウトはこちら。

1段目と2段目のグラウンドを分割する必要があるので、

グランド面のベタパターンにもスリットを入れています。

こちらは底面のベタパターンです。

パワーアンプの電源のリップルノイズは

能率の低いスピーカーでは気になりませんが、

静かな部屋で高能率のスピーカーでならす場合は耳に付きます。

 

パワーアンプの電源は大電流を扱うため、

リニアレギュレータによるアプローチは熱損失の対策が大きくなります。

 

また、スイッチング電源によるアプローチは

スイッチングノイズの対策が必要になります。

 

データシートに基づくトロイダルトランスのSPICEモデル作成

トロイダルトランスの電源投入時や短絡時の突入電流の評価を

SPICEシミュレーションするために、

モデルパラメータをデータシートから作成する方法を検討します。

 

nuvotem Toroidal Transformer, 300VA, 115Vx2, 35Vx2(RS Part No. 257-5231)をターゲットにします。

 

LT SPICEにおけるトランスのモデルはこちらの記事のように複数のインダクター(L)と結合定数(K)で定義できます。

LTspice: Simple Steps for Simulating Transformers

 

また、インダクターのパラメータとしては、インダクタンスと直列抵抗が必要です。

トランスのデータシートには、直列抵抗(Primary 2.4Ω, Secondary 0.3010Ω)は載っていますが、

インダクタンスは載っていないため、パラメータの推定が必要です。

 

トロイダルコイルのモデルはこちらを参照します。

第2章 トランスフォーマーの基礎

2-1 インダクタンスの基礎

(c) トロイダルコイル

図2-3 トロイダルコイル

式(2.1.9)に、

データシートから読み取れる寸法(a=40mm(推定), b=58mm, 2r=115-40=75mm、

コアを鉄と仮定した透磁率(μ0μ=6.3xE-3)、

仮定の巻き数(N=100)をそれぞれ代入すると、

L=(6.3xE-3×100^2x40xE-3x58xE-3)/(75xE-3×3.14)=620mHとなります。

一方、Lは電圧の自乗(Primary 115V, Secondary(No Load) 37.88V)に比例するので、

Lp=115^2=13225xConst(mH)

Ls=37.88^2=1435xConst(mH)

 

また、L=2x(Lp+Ls)なので、

Const=620/(2x(13225+1435))=2.11E-2となります。

したがって、

Lp=13225×2.11E-2=279 mH

Ls=1435×2.11E-2=30.3 mH

となります。

 

結合係数(K)は、

鉄損(1.59W)が無負荷時の2次側定格(2×37.88[V]x4.286[A]=324.7[W])に生じるとして、

K=1-1.59/324.7=0.995

となります。

 

結局、トランスの場合、

インダクタンスは1次側と2次側の比率が重要なので、

大体でよい場合は、

1次側電圧、2次側電圧をそれぞれ自乗して

100mH程度のオーダーになるようにスケールすれば十分です。