400W BTL自励式D級アンプの設計

LTC1992-1による400W BTL自励式D級アンプの設計をまとめておきます。

ゲイン20倍のハーフブリッジ自励式D級アンプ(100W)2chを平衡入力できるように完全差動アンプ(LTC1992-1)で駆動するだけです。

400W BTL自励式D級アンプの回路図
400W BTL自励式D級アンプの過渡解析の結果(緑:出力電圧、青:出力コモンモード電圧、赤:出力)
1.4V 10kHz 正弦波入力時の出力電圧のFFT

2つのレッグの互いに反転された矩形波がクロックになるので、3レベルPWMになるようです。

D級アンプのデメリット解消と音質改善

D級オーディオパワーアンプにおけるデメリットの解消方法と音質改善につてまとめておきます。

以下のリンクが参考になります。

アプリケーションノート 3977 D級アンプ:基本動作と開発動向

ZVS自励発振式電流モードD級アンプ

最初に、一般的なD級オーディオパワーアンプの設計課題をあげておきます。

  1. PSRRの向上
  2. 周波数特性の向上
  3. スイッチングノイズ対策(EMI)の向上

まず、PSRRの向上に関しては、スイッチングノード(プリフィルタ)のフィードバックが必要です。

実際の設計としては、電圧モードの自励発振式(ΣΔ変調)での対応が容易です。

次に、周波数特性の向上に関しては、ポストフィルタのフィードバックが必要です。

実際の設計としては、電流モード(インダクタ電流検出)の他励式として状態フィードバックによるPI制御での対応が容易です。

最後にEMIの向上に関しては、ZVS、CMC、スペクトラム拡散(自励発振式のPDM)での対応が容易です。

BTLであれば、フィルタレス変調方式(3レベルPWM)もありますが、より複雑になります。

最近の薄型テレビやスマートフォンなどはICによるD級アンプですが、音質に不満はありません。

また、試作したZVS自励発振式電流モードD級アンプの音質も、電源からトータルで回路設計を詰めたので、十分な基本性能(SNR, 周波数特性)に到達しています。

スペックで評価できない動的な聴感としては、トリオジャズのベース、ピアノ、キック、ブラシ、シンバル、ミュージシャンのハミングがUSBインタフェース(DAC)のヘッドホン出力で聴くよりもリアルにスピーカー(8cm/38cm)で音楽を体感できます。

スイッチング電源はオーディオに不向きなのか?

オーディパワーアンプにおけるスイッチング電源のノイズ対策をまとめておきます。

以下のリンクが参考になります。

スイッチング・レギュレータのノイズを包括的に理解する

PFC+LLC+CMCによるオーディオ用スイッチング電源

まず、3つのノイズに対する対応は以下の通りです。

  1. リップルノイズは、フィルタ(LC)で対応します。
  2. 広帯域ノイズは、回路設計(IC)やプリント基板のレイアウトで対応します。
  3. スパイクノイズは、ZVS(BCM PFC, LLC DC/DC)で対応します。

一方、ノイズを発生するスイッチング電源側の対策だけでは不十分です。

特に、スイッチング電源の基板やケーブルから伝導および放射されるコモンモードノイズ対策としては、アンプ基板の入力信号の伝送方式で対応します。

具体的にはアンプの入力部をバランス入力およびラインレシーバ(差動増幅)にすることで対応します。

また、コモンモードループの対策も重要で、アースインダクタやCMCで対応します。

D級アンプにおけるオペアンプの音質への影響 その6

自励発振式のD級アンプにおける2回路オペアンプの積分回路でのIcmrr(IbとVcmの傾き)の評価をまとめておきます。

こちらの資料を参考にしています。

ppmレベルの精度のオペアンプ回路は実現できるのか?

ICMRR

入力信号のコモンモード・レベルに関連するのは、入力バイアス電流と、電源に伴うその変化であるICMRRです。
図1に示したように、ICMRRは4つに細分化されます。記号の折れ線は、バイアス電流が電圧に応じて可変であり、線形でない可能性があるということを表しています。2つの入力のバイアス電流とレベルへの依存度は異なる可能性があります。また、各入力は、両方の電源に応じて独立して変化します。ICMRR(合算することによりバイアス電流が決まります)により、アプリケーション抵抗の値との乗算で決まる電圧ノイズが生成され、回路全体のオフセット電圧が増加します。

ppmレベルの精度のアンプ回路は実現できるのか?

データシートのグラフから算出したIcmrrをまとめておきます。

ppm レベルの精度を得るために必要なオペアンプのパラメータの比較

IbとVcmのグラフをデータシートより引用します。

OPA2227

OPA2227

ADA4001-2

ADA4001-2

ADA4075-2

ADA4075-2

OPA2134

OPA2134

LT1057

LT1057

LT1213

LT1213

LT1113

LT1113

JFT入力のオペアンプはIbが小さいので問題になりませんが、BJT入力のオペアンプは注意が必要です。

なお、OPA2227の値が小さいのは入力バイアス電流を内部で補償しているからのようです。

D級アンプにおけるオペアンプの音質への影響 その5

自励発振式のD級アンプにおける2回路オペアンプの積分回路でのTHD+NとVosの評価をまとめておきます。

こちらの資料を参考にしています。

ppmレベルの精度のオペアンプ回路は実現できるのか?

一方、オーディオ・アンプに相当するオペアンプ製品の場合、かなり安価であるのにもかかわらず、歪み性能が非常に高いものがあります。

但し、オフセットと1/fノイズを抑えるようには設計されていないため、それらの性能は良好ではありません。

また、この種のアンプも、おそらく10kHzを超える領域では、高い歪み性能を発揮することはできないはずです。

ppmレベルの精度のアンプ回路は実現できるのか?

そこで、THD+NとVosの関係に着目してみます。

データシートの値とD級アンプ・アプリケーションでのVosの実測値です。

ppm レベルの精度を得るために必要なオペアンプのパラメータの比較

THD+Nの周波数特性のグラフをデータシートより引用します。

OPA2227

OPA2227

ADA4001-2

ADA4001-2

ADA4075-2

ADA4075-2

AD8672

AD8672

OPA2134

OPA2134

LM4562

LM4562

LT1213

LT1213

LT1113

LT1113

THD+Nは1kHzの値がよくても10kHzから20kHzにかけて2-10倍程度上昇するようです。

また、VosとTHD+Nはトレードオフになるようです。

D級アンプにおけるオペアンプの音質への影響 その4

自励発振式のD級アンプにおける2回路オペアンプの積分回路での精度の評価をまとめておきます。

こちらの資料を参考にしています。

ppmレベルの精度のオペアンプ回路は実現できるのか?

図と表を引用します。

オペアンプの誤差源
ppm レベルの精度を得るために必要なオペアンプの仕様
ppm レベルの精度を得るために必要なオペアンプのパラメータの比較

比較したオペアンプは以下の11種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

MUSES8920

LT1057

LT1213

NJM2068

LT1113

積分回路は容量を介してFBをかけるため、電源や電流に関連するパラメータ(in, Ib, PSRR, Isc)の影響が大きくなると思われます。

実際のD級アンプで試した積分器に適したオペアンプの中では、ADA4075を基準として、OPA2227, ADA4001-2, ADA4075-2, AD8672, OPA2134, LM4562あたりでしょうか。

D級アンプにおけるオペアンプの音質への影響 その3

自励発振式のD級アンプにおける2回路オペアンプの積分回路でのノイズ密度の評価をまとめておきます。

こちらの資料を参考にしています。

最適ノイズ性能を得るための低ノイズ・アンプ選択の手引き

オペアンプを使った積分器

低ノイズ設計に適したオペアンプの選択
性能指標(Rs,op)の計算

プロットしたオペアンプは以下の9種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

LT1057

LT1213

LT1113

Rs,opが1MΩを超えるJFET入力オペアンプ(LT1057, ADA4001-2, OPA2134)は1MΩの軸上にプロットしています。

また、基準となる積分回路の信号源抵抗は2.7k||56k=2.6kΩ, ジョンソン・ノイズ6.4nVrtHzとして、プロットしています。

実際のD級アンプで試した積分器に適したオペアンプの中で、低ノイズ設計に適したオペアンプは、LM4562, ADA4075-2, OPA2227, AD8672, LT1113となるようです。

D級アンプにおけるオペアンプの音質への影響 その2

自励発振式のD級アンプにおける2回路オペアンプ(積分回路と減算回路)のVs=+-5Vでの音質への影響をまとめておきます。

D級アンプ用オペアンプ比較表 その2

比較対象のオペアンプは以下の11種です。

OPA2227

ADA4001-2

ADA4075-2

AD8672

OPA2134

LM4562

MUSES8920

LT1057

LT1213

NJM2068

LT1113

比較表のデータシートの値(GB積、スルーレート、オープンループゲイン、CMRR, PSRR, 入力オフセット電圧および温度ドリフト、消費電流)はVs=+-15V, Vcm=0V, Ta=25degCのTypicalでまとめています。

実際の動作条件はVs=+-5Vで、回路構成としては積分回路(LPF)と減算回路(比例制御)で利用しています。

また、実際のD級アンプに実装した際の出力電圧のオフセットの実測値(L, R)から算出した絶対値の平均でソートしています。

積分精度への影響が大きい、オープンループゲインとオフセットのよいオペアンプを選択していますが、実際の回路での電圧オフセットの実測値は、必ずしもデータシートの値とは比例しないようです。

D級アンプの電圧オフセットの実測値がよいオペアンプは、OPA2227, ADA4001-2, ADA4075-2, AD8672でした。

D級アンプにおけるオペアンプのコンパレータ動作の要件

電圧モードの自励発振式D級アンプの積分回路に使用するオペアンプをコンパレータ(シュミットトリガ)として動作させると、使用できないオペアンプもあるので設計上の考慮事項をまとめておきます。

こちらのリンクが参考になります。

オペアンプをコンパレータとして使用する際のヒント

オペアンプをコンパレータとして構成する場合の考慮事項:

  1. 差動入力クランプ・ダイオード(背面結合ダイオード)の有無
  2. 入力同相モード電圧
  3. 伝播遅延
  4. 過負荷回復時間
  5. スルー・レート

例としてLT1213のデータシートから図表を引用します。

LT1213の等価回路図

まず、等価回路図で差動入力クランプ・ダイオードがないことを確認します。-INがQ1のベースに、+INがQ2のベースに直結されていて、クランプダイオードがありません。

次に、入力同相モード電圧は、V+-1.5VからV-の範囲にすべきと記載があります。

LT1213のコンパレータ応答時間とオーバードライブ電圧

過負荷回復時間に関しては、伝播遅延は17ns、オーバードライブ電圧に対するコンパレータの応答時間の変化も載っています。

LT1213の積分回路におけるコンパレータ動作のアプリケーション波形

アプリケーション波形としては、Vs=+-5Vにおいて、オーバードライブが+-50-10mVの矩形波の入力(緑)に対して、+-280mVの三角波(赤)を1.8V/usのスルーレートで出力して、無信号時は自励発振しています。

結論として、差動入力クランプ・ダイオードがないことの確認、入力同相モード電圧範囲、スルーレートに注意が必要となります。

また、高精度オペアンプはクランプダイオードを実装しているものが多いようです。

D級アンプにおけるオペアンプの音質への影響

自励発振式のD級アンプにおける2回路オペアンプ(積分回路と減算回路)のVs=+-5Vでの音質への影響をまとめておきます。

D級アンプ用オペアンプ比較表

比較対象のオペアンプは以下の8つです。

LM4562

MUSES8920

LT1213

NJM2068

OPA2134

ADA4075-2

ADA4001-2

LT1057

比較表のデータシートの値(GB積、スルーレート、オープンループゲイン、入力オフセット電圧および温度ドリフト、電圧ノイズ密度(10Hz)、消費電流)はVs=+-15V, Vcm=0V, Ta=25degCのTypicalでまとめています。

実際の動作条件はVs=+-5Vで、回路構成としては積分回路(LPF)と減算回路(比例制御)で利用しています。

また、実際のD級アンプに実装した際の出力電圧のオフセットの実測値をL, Rおよび絶対値の平均もまとめています。

最後に、オペアンプの実売価格を参考としてあげています。

パラメータの選定に関して、D級アンプ全体の音質への影響としては低周波での積分回路におけるオープンループゲイン、入力電圧オフセット、電圧ノイズ密度が支配的と考えています。また、入力電圧オフセットの温度ドリフトおよび温度上昇に影響する消費電流も変動要素として支配的と考えています。

結論として、これら8つのオペアンプで音質的に大きな変化がある回路ではないですが、それでも実際の聴感で判別できる程度の差異はあります。

傾向と特徴をあげておきます。

  1. オープンループゲインの増大に伴い、音の躍動感が増す。(LM4562, MUSES8920, LT1213)
  2. 電圧ノイズ密度の減少に伴い、音の奥行き感が増す。(ADA4075-2)
  3. GB積の大きなオペアンプで、最終的な電圧オフセットが大きくなるものがある。(LT1213, NJM2068)